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1
SYSTEMS AND METHODS FOR
CONCURRENT SIGNAL RECOGNITION

BACKGROUND

This specification relates to signal processing, and, more
particularly, to systems and methods for concurrent signal
recognition.

In most applications, any given signal may be treated as a
mixture of signals from various sources. In the field of audio
processing, for example, recorded music typically includes a
mixture of overlapping parts played with different instru-
ments. Also, in social environments, multiple people often
tend to speak concurrently—referred to as the “cocktail party
effect.” In fact, even signals from so-called single sources can
actually be modeled a mixture of signal and noise.

Recognition of concurrent, superimposed, or otherwise
overlapping signals is a significantly hard task. Current mod-
els for signal recognition cannot be easily extended to deal
with additive interference, and often need to be comple-
mented with a source separation algorithm that preprocesses
the data before recognition takes place. This is often a risky
combination insofar because the output of a separation algo-
rithm is not always guaranteed to be recognizable—at least
not by typical recognition systems.

A different temporally-sensitive approach characterizes
signals from concurrent sources by Hidden Markov Models
(HMMs). The sum of the speech is then characterized by a
factorial HMM, which is essentially a product of the HMMs
representing the individual sources. Inference can be run on
the factorial HMM to determine what was emitted by indi-
vidual sources. Still, this approach involves source separation
and computationally intensive operations.

SUMMARY

The present specification is related to systems and methods
for the recognition of concurrent, superimposed, or otherwise
overlapping signals. In some embodiments, methods and sys-
tems described herein provide a Markov Selection Model that
is capable of recognizing simultaneously emitted signals
from different sources. The recognition may be performed
without the need to separate signals or sources, thus having a
low computational complexity. Accordingly, these tech-
niques may be useful in automatic transcription, noise reduc-
tion, teaching, electronic games, audio search and retrieval,
medical and scientific applications, etc.

For example, an illustrative embodiment may include a
“training” stage followed by an “application” or “evaluation”
stage. In the training stage, a method may process a signal
sample from a source. The signal sample may be pre-re-
corded, in which case the training stage may be performed
“offline.” Additionally or alternatively, the sound sample may
be a portion of a “live” occurrence; thus allowing the training
stage to take place “online” or in “real-time.”

In some embodiments, a training method may derive
parameters for a Markov Selection Model for each signal
sample of each source. For example, in the case of speech,
each model may represent a word or an utterance spoken by a
person. Moreover, each model may include spectral dictio-
naries, and each spectral dictionary may have two or more
spectral components such that the sound may be represented
by a linear combination of spectral components.

In an application or evaluation stage, a method may receive
a mixed signal such as a mixture of sounds from different
sources. In the case of speech, at least a portion of the sound
mixture may include concurrently spoken utterances from
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different persons. The method may combine all spectral vec-
tors and calculate mixture weights for each of the spectral
vectors based on the sound mixture. Once the mixture
weights for each spectral vector are known, the method may
calculate the likelihood that each model expresses an utter-
ance in the sound mixture. Furthermore, the method may
select models with highest likelihood of representation at a
given time. In this manner, sources corresponding to selected
models may be identified without having been separated.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an illustrative computer sys-
tem or device configured to implement some embodiments.

FIG. 2 is a block diagram of an illustrative signal analysis
module according to some embodiments.

FIGS. 3A and 3B are graphical representations of an Hid-
den Markov Model (HMM) and a Markov Selection Model,
respectively, according to some embodiments.

FIG. 4 is a graphical representation of a two state, left-to-
right Markov Selection Model according to some embodi-
ments.

FIG. 5 are graphs of results obtained from learning and
state sequence estimation operations for individual sounds
according to some embodiments.

FIG. 6 isadiagram of a statistical model for P_(f) according
to some embodiments.

FIG. 7 are graphs of results obtained from learning and
state sequence estimation operations for a sound mixture
according to some embodiments.

FIG. 8 is a flowchart of a method for recognizing concur-
rent sounds according to some embodiments.

FIG. 9 is a flowchart of another method for recognizing
concurrent sounds according to some embodiments.

FIG. 10 is a flowchart of yet another method for recogniz-
ing concurrent sounds according to some embodiments.

FIG. 11 are graphs showing results of experiments that
illustrate the ability of the Markov Selection Model to dis-
cover sequences from speech mixtures according to some
embodiments.

While this specification provides several embodiments and
illustrative drawings, a person of ordinary skill in the art will
recognize that the present specification is not limited only to
the embodiments or drawings described. It should be under-
stood that the drawings and detailed description are not
intended to limit the specification to the particular form dis-
closed, but, on the contrary, the intention is to cover all modi-
fications, equivalents and alternatives falling within the spirit
and scope of the claims. The headings used herein are for
organizational purposes only and are not meant to be used to
limit the scope of the description. As used herein, the word
“may” is meant to convey a permissive sense (i.e., meaning
“having the potential to”), rather than a mandatory sense (i.e.,
meaning “must”). Similarly, the words “include,” “includ-
ing,” and “includes” mean “including, but not limited to.”

DETAILED DESCRIPTION OF EMBODIMENTS
Introduction

This specification first presents an illustrative computer
system or device as well as an illustrative signal analysis
module that may implement certain embodiments of methods
and systems disclosed herein. The specification also dis-
cusses an additive model of various signal sources. Then, the
specification introduces a Markov Selection Model that,
together with probabilistic decomposition methods, may
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enable recognition of additive signal mixtures without the
need to perform source separation. The specification goes on
to discuss signal mixtures and describes illustrative methods
that explain some of the concepts described herein. Lastly, the
specification discusses the results of various experiments.

In some embodiments, the techniques described herein
may be used in music processing, source extraction, noise
reduction, teaching, automatic transcription, electronic
games, audio search and retrieval, medical and scientific
applications, etc. Although certain embodiments and appli-
cations discussed herein are in the field of audio processing,
and particularly in the field of speech recognition, it should be
noted that these techniques may be similarly applied in any
other field where there may be concurrent, superimposed, or
otherwise overlapping signals.

For example, some of the techniques described herein may
be applicable to electromagnetic signals that are processed in
various medical applications (e.g., an electrocardiogram of a
mother’s heartbeat mixed with the fetus’s, neural signals
from a brain scan with multiple superimposed actions, etc.).
Further, these techniques may also be applicable to various
fields of engineering (e.g., signal readings from accelerom-
eter in a jet or car engine, etc.).

Throughout the specification, the term “signal” may refer
to a physical signal (such as an acoustic or electromagnetic
signal) and/or to a representation of a physical signal. In some
embodiments, a signal may be recorded in any suitable tan-
gible medium and in any suitable format. For example, a
physical signal may be digitized, recorded, and stored in
computer memory. The recorded signal may be compressed
with commonly used compression algorithms. Typical for-
mats for music or audio files may include WAV, OGG, AIFF,
RAW, AU, AAC, MP4, MP3, WMA, RA, etc.

The term “source” refers to any entity (or type of entity)
that may be appropriately modeled as such. For example, a
source may be an entity that produces, interacts with, or is
otherwise capable of producing or interacting with a signal. In
acoustics, for example, a source may be a musical instrument,
a person’s vocal cords, a machine, etc. In some cases, each
source—e.g., a guitar—may be modeled as a plurality of
individual sources—e.g., each string of the guitar may be a
source. In other cases, entities that are not otherwise capable
of producing a signal but instead reflect, refract, or otherwise
interact with a signal may be modeled a source—e.g., a wall,
enclosure, or electromagnetic field. Moreover, in some cases
two different entities of the same type—e.g., two different
pianos—may be considered to be the same “source” for mod-
eling purposes.

The term “mixed signal” or, in the particular case of audio,
“sound mixture,” refers to a signal that results from a combi-
nation of signals originated from two or more sources into a
lesser number of channels. For example, most modern music
includes parts played by different musicians with different
instruments. Ordinarily, each instrument or part may be
recorded in an individual channel. Later, these recording
channels are often mixed down to only one (mono) or two
(stereo) channels. If each instrument were modeled as a
source, then the resulting signal would be considered to be a
mixed signal. It should be noted that a mixed signal need not
be recorded, but may instead be a “live” signal, for example,
from a live musical performance or the like. Moreover, in
some cases, even so-called “single sources” may be modeled
as producing a “mixed signal” as mixture of signal (e.g.,
sound) and noise.

In various embodiments, a goal-seeking or optimization
process (such as, for example, an operation for determining
an “optimal weight distribution” or the like) may or may not
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always guarantee convergence to an absolute solution. For
example, an optimization process may exhaustively evaluate
a solution space to ensure that the identified solution is the
best available. Alternatively, an optimization process may
employ heuristic or probabilistic techniques that provide a
bounded confidence interval or other measure of the quality
of a solution. For example, an optimization process may be
designed to produce a solution that is within at least some
percentage of an optimal solution, to produce a solution that
has some bounded probability of being the optimal solution,
or any suitable combination of these or other techniques.

In the following detailed description, numerous specific
details are set forth to provide a thorough understanding of
claimed subject matter. However, it will be understood by a
person of ordinary skill in the art in light of this specification
that claimed subject matter may be practiced without neces-
sarily being limited to these specific details. In some
instances, methods, apparatuses or systems that would be
known by a person of ordinary skill in the art have not been
described in detail so as not to obscure claimed subject matter.

Some portions of the detailed description which follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
cal or magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels. Unless specifically
stated otherwise, as apparent from the following discussion, it
is appreciated that throughout this specification discussions
utilizing terms such as “processing,” “computing,” “calculat-
ing,” “determining” or the like refer to actions or processes of
a specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose elec-
tronic computing device.

A Computer System or Device

FIG. 1 is a block diagram showing elements of an illustra-
tive computer system 100 that is configured to implement
embodiments of the systems and methods described herein.
The computer system 100 may include one or more proces-
sors 110 implemented using any desired architecture or chip
set, such as the SPARC™ architecture, an x86-compatible
architecture from Intel Corporation or Advanced Micro
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Devices, or an other architecture or chipset capable of pro-
cessing data. Any desired operating system(s) may be run on
the computer system 100, such as various versions of Unix,
Linux, Windows® from Microsoft Corporation, MacOS®
from Apple Inc., or any other operating system that enables
the operation of software on a hardware platform. The pro-
cessor(s) 110 may be coupled to one or more of the other
illustrated components, such as a memory 120, by at least one
communications bus.

In an embodiment, a specialized graphics card or other
graphics component 156 may be coupled to the processor(s)
110. The graphics component 156 may include a graphics
processing unit (GPU) 170, which in some embodiments may
be used to perform at least a portion of the techniques
described below. Additionally, the computer system 100 may
include one or more imaging devices 152. The one or more
imaging devices 152 may include various types of raster-
based imaging devices such as monitors and printers. In an
embodiment, one or more display devices 152 may be
coupled to the graphics component 156 for display of data
provided by the graphics component 156.

In an embodiment, program instructions 140 that may be
executable by the processor(s) 110 to implement aspects of
the techniques described herein may be partly or fully resi-
dent within the memory 120 at the computer system 100 at
any point in time. The memory 120 may be implemented
using any appropriate medium such as any of, various types of
ROM or RAM (e.g.,, DRAM, SDRAM, RDRAM, SRAM,
etc.), or combinations thereof. The program instructions may
also be stored on a storage device 160 accessible from the
processor(s) 110. Any of a variety of storage devices 160 may
be used to store the program instructions 140 in different
embodiments, including any desired type of persistent and/or
volatile storage devices, such as individual disks, disk arrays,
optical devices (e.g., CD-ROMs, CD-RW drives, DVD-
ROMSs, DVD-RW drives), flash memory devices, various
types of RAM, holographic storage, etc. The storage 160 may
be coupled to the processor(s) 110 through one or more stor-
age or 1/O interfaces. In some embodiments, the program
instructions 140 may be provided to the computer system 100
via any suitable computer-readable storage medium includ-
ing the memory 120 and storage devices 160 described above.

The computer system 100 may also include one or more
additional I/O interfaces, such as interfaces for one or more
user input devices 150. In addition, the computer system 100
may include one or more network interfaces 154 providing
access to a network. It should be noted that one or more
components of the computer system 100 may be located
remotely and accessed via the network. The program instruc-
tions may be implemented in various embodiments using any
desired programming language, scripting language, or com-
bination of programming languages and/or scripting lan-
guages, e.g., C, C++, C#, Java™, Perl, etc. The computer
system 100 may also include numerous elements not shown
in FIG. 1, as illustrated by the ellipsis.

A Signal Analysis Module

In some embodiments, a signal analysis module may be
implemented by processor-executable instructions (e.g.,
instructions 140) stored on a medium such as memory 120
and/or storage device 160. FIG. 2 shows an illustrative signal
analysis module that may enable certain embodiments dis-
closed herein. In an embodiment, module 200 may provide a
user interface 202 that includes one or more user interface
elements via which a user may initiate, interact with, direct,
and/or control the method performed by module 200. Module
200 may be operable to obtain digital signal data for a digital
signal 210, receive user input 212 regarding the signal data,
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analyze the signal data and/or the input, and output analysis
results for the signal data 220. In an embodiment, the module
may include or have access to additional or auxiliary signal-
related information 204—e.g., a collection of representative
signals, model parameters, etc.

Signal analysis module 200 may be provided as a stand-
alone application or as a module of, or plug-in for, a signal
processing application. Examples of types of applications in
which embodiments of module 200 may be used may include,
but are not limited to, signal (including sound) analysis, char-
acterization, search, processing, and/or presentation applica-
tions, as well as applications in security or defense, educa-
tional, scientific, medical, publishing, broadcasting,
entertainment, media, imaging, acoustic, oil and gas explo-
ration, and/or other applications in which signal analysis,
characterization, representation, or presentation may be per-
formed. Specific examples of applications in which embodi-
ments may be implemented include, but are not limited to,
Adobe® Soundbooth® and Adobe® Audition®. Module 200
may also be used to display, manipulate, modity, classify,
and/or store signals, for example to a memory medium such
as a storage device or storage medium.

Additive Models of Signals

In some embodiments, signal analysis module 200 may
implement an additive signal model such as described in this
section. Source separation methods typically use prior knowl-
edge of the sources in a mixture. A common scenario may
involve two “speakers” a and b, training recordings x“(t) and
x°(1), and a mixture m(t)=y*(t)+y’(t). Usually, the goal of a
source separation method is to use the information extracted
from x“(t) and x’(t) to estimate y*(t) and y(t) by observing
only m(t). One way to perform this task is to use non-negative
spectrum factorization. This section describes a probabilistic
version of such method, which allows later incorporation into
a Markov model.

Specifically, given the scenario above, the spectral magni-
tude of the observed signals may be extracted at regularly
sampled analysis frames:

X (AHIDFT(x(T(t-1)+1, . .. ,T)) Equation 1

where T is the size of the analysis frame chosen.

Equation 1 thus yields X_“l and X_?, that is, the magnitude
spectra for signals from speakers a and b. Magnitude spectra
may be modeled as histograms drawn from a mixture of
multinomial distributions, which leads to the following latent
variable model:

M Equation 2
X(f)~ Y PFIDPD)

9

where the symbo represents a drawing from a distribu-
tion, P(f1z) represents the z* component multinomial, P_(z)is
the probability with which it is mixed to produce X, (the
magnitude spectrum vector for the t% analysis frame), and M
is the total number of component multinomials. In some
embodiments, the component multinomials P(flz) (some-
times referred to as “multinomial bases”) for any speaker and
their corresponding mixture weights P, (z) for each spectral
vector may be estimated using an Expectation-Maximization
(EM) algorithm or the like.

This additive sound model may be seen as a probabilistic
latent semantic indexing (pLSI) model. Looking past its
probabilistic formulation, however, it may be noted that P(f1z)
represents a normalized spectrum. The set of all multinomials
may thus be viewed as a dictionary of spectral bases, with
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Equation 2 representing an algebraic decomposition and M
representing the rank of decomposition. Meanwhile, P_(z)
may be seen as weights that indicate how to put the dictionary
elements together to approximate the input at hand. Accord-
ingly, Equation 2 may be written as:

R M Equation 3
Xd(f) = RelH) =ge ) PF 1P

where

gr= Xelf).

The scalar g_ aims to ensure that the eventual approxima-
tion is scaled appropriately to match the input. This may also
be thought of as a non-negative matrix factorization in which
P(flz) and P_(z) correspond to the two non-negative factors.

Atthis point, two observations allow extraction of y*(t) and
y?(t) from m(t). The first one is that, in general, it will hold
that:

M H=Y2NO+ Y20 Equation 4

This means that the magnitude spectrogram of the mixture
of the two sources is approximately equal to the sum of the
magnitude spectrograms of the two sources. Although due to
phase cancellations it may be difficult to achieve exact equal-
ity, this assumption is largely correct in most practical appli-
cations.

The second observation is that the multinomial bases
P“(f1z), which may be estimated from X_*, may describe Y_*
better than the bases P?(flz) estimated from X_” and vice-
versa. That is

o M

1% Equation 5
Diaf =1 DS P (1972
r z

<

ye o
DKL[g—r "y P z)Pr(z)]

and vice-versa. In the foregoing equation, D, (.) denotes the
Kullback-Leibler divergence, P*(flz) and P*(fz) are the dic-
tionaries learned from x“ and x°, and each P_(z) is the optimal
weight distribution for approximating Y..* given each of the
two dictionaries.

These two observations indicate that the sound mixture
M_(f) may be explained using both dictionaries P*(flz) and
P’(f1z):

M M Equation 6
Mc(f) = g Pel@ ) P(f 1 DPH(@) + & Pe(0) Y PPUf [P ()

for two optimally selected instances of P_(z). Moreover, most
of'the energy of each source is represented by the part of this
summation that includes the multinomial bases for that
source.

In some embodiments, for both dictionary learning and
weight estimation, an EM algorithm or the like may be used
to estimate quantities in the above equations. In other
embodiments, however, other algorithms may be used.
Applying the EM algorithm, for instance, yields the following
“update equations” for any dictionary element P(flz) and its
corresponding weight P_(z) for an input X (f):
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> Pl HXF) Equation 7
P(2) = et A
Yot P 1 DX)
, > Pl HXel) Equation 8
G = S R %D
where
PP 12 Equation 9
P, I LA O R
€= 5 s 1)

In some embodiments, the dictionary of multinomial bases
for each of the sources may be learned from separate training
data during a training process. These dictionaries may then be
used, for example, to decompose mixed recordings (i.e., to
find the mixture weights P_(z) for all bases). Once the decom-
position in Equation 6 is achieved, Y,“l and Y.’(f) may be
separated recomposed and reverted back to the time domain
to obtain separated estimates of y*(t) and y*(t).

Some of the systems and methods described herein are
capable to apply direct recognition using the same additive
sound model described above (as opposed to separating and
then recognizing). To that end, the foregoing model may be
incorporated into a Markov Selection Model described in the
following section.

The Markov Selection Model

Model Definition

This section introduces an application of the model and
observations described in the previous section as applied on
temporal data. A Hidden Markov Model (HMM) is a doubly
stochastic model comprising an underlying Markov chain
and observation probability densities at each state in the
chain. Parameters characterizing the model include:

(a) “initial state probabilities” II={P(s)¥s}, which repre-
sent the probabilities of beginning a Markov chain at
each state;

(b) a “transition matrix” T={P(s,Is)Vs,, s,}; which repre-
sents the set of all transition probabilities between every
pair of states; and

(c) a set of “'state output distributions®={P(xIs)¥s}, which
represents the probability of generating observations
from each of the states.

A graphical representation for this model is shown in FIG.

3 A, where the state at each time is dependent on the state at
the previous time and generates the observation (dotted
arrows indicate injection of parameters).

FIG. 3B shows a graphical representation for a Markov
Selection Model according to some embodiments. In contrast
with a regular HMM model, here instead of states generating
observations directly, they may generate labels z={z} of sets
of multinomial bases that produce observations. Thus, the
output distributions of the Markov Selection Model may be
given by: B={P(z_Is)Vs}. Also, to generate observations, the
multinomial bases in z, may be “mixed” according to weights
w, (This additional dependence is highlighted by the dotted
outline). The vector of weights for all bases, w, which actually
represents a multinomial over z, may be drawn from a distri-
bution that may be assumed to be uniform. In some embodi-
ments, only the bases selected by the state (and their weights,
appropriately normalized using any suitable normalization
function) may be used to generate a final observation.
Because the underlying Markov process contributes to data
generation primarily by selecting bases, this model is referred
to as the Markov Selection Model.
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Referring now to FIG. 4, a two state, left-to-right Markov
Selection Model is depicted according to some embodiments.
As illustrated, each state (1 and 2) may select one pair of
multinomial bases. The two bases or dictionaries that
describe each state are shown left and right as P(flz,). The
bottom of the figure displays the input spectrogram X _(f) that
this model describes; the left part being described as a mixture
of spectral vectors P(flz,) and P(f1z,) and the right part by
spectral vectors P(flz;) and P({1z,). The graph also shows
initial state probabilities ranging from 0 to 1.

In some embodiments, the weights w_ are not fixed but may
themselves be drawn for every observation. Further, the draw
of the weights themselves may not be dependent on the state
in any manner, but may instead be independent. The actual
probability of an observation may depend on the mixture
weights. In some embodiments, in order to compute the com-
plete likelihood of an observation the product of the weight-
dependent likelihood of the observation and the probability of
drawing the mixture weight vector may be integrated over the
entire probability simplex on which w resides.

The Markov Selection Model may be used, for example,
for inferring an underlying state sequence. To do so, it may be
sufficient to determine the Markov-chain-independent a pos-
teriori probabilities P,, (sIx)| of the states, and utilize those
probabilities for estimating the state sequence. In some
embodiments, the actual observation probability P(xIs) is not
required. Indeed, this observation may also be utilized in
other approaches to HMM-based speech recognition systems
where the Markov-chain-independent a posteriori probabili-
ties of states are obtained through models such as Neural
Networks or the like for inference of the underlying word
sequence.

In some embodiments, instead of explicitly integrating
over the space of all weights to obtain the likelihood of the
observation, the Markov-chain-independent a posteriori state
probability may be used for inference and learning of Markov
chain parameters. Then, the a posteriori state probability may
be approximated by the sum of a posteriori most likely mix-
ture weights for the multinomial bases selected by any state.
As such, the following approximation may be used:

P(z| Xo) ~ P(z| X;) = argmax P’ | %) = Pr(2) Equation 10
Z

Pina(s|x) = Z Pz | X0 = Z P.(2) Equation 11

xEz¢ xEzg

where P_(z) is the same value referred to in Equation 8.

In other words, the mixture weights that maximize the
likelihood of the portion of the graph enclosed by the dashed
outline of the Markov Selection Model of FIG. 3B may be
derived. This may be achieved without reference to the
Markov chain, and utilized to compute the Markov-chain-
independent conditional probabilities for states, which in turn
may be used in the inference, and which effectively factors the
observation dependency and the state dependency of the
model.

A consequence of this approximation is that the Markov
Selection Model of FIG. 3B may be factored in two parts or
components. The first component (enclosed by the dashed
outline) may be seen as a probabilistic latent semantic analy-
sis (pLSA) model that obtains w,,, and thereby P (z). The
second component, given the P_(z) computed from the first
part, may be seen as an HMM with P (z.) as state output
densities. In some embodiments, inference and learning may
run largely independently in the two components, with the
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pLSA component employed to learn its parameters, while the
HMM component may use a Baum-Welch training procedure
or the like to learn the Markov chain parameters Il land T, for
example. Then, both components may be combined for learn-
ing multinomial bases P(flz).

Parameter Estimation

In some embodiments, a training method or algorithm may
beused to derive parameters for the Markov Selection Model.
For example, this method may be performed by adapting a
Baum-Welch training procedure or the like. Specifically, in a
first operation the “emission” probability terms for each state
are computed. Because this is locally also a maximum like-
lihood estimate, an intermediate value of the optimal weight
vector may be given by:

__ PAS2) Equation 12
P SRR

D5, PRINXAS) Equation 13
Pr(z) =

Zf,z’ Pr(Z £)X:(f)

It may be noted that the above estimation does not refer to
the underlying Markov chain or its states. Instead, these com-
putations are local to the components within the dotted out-
line of FIG. 3B. Once P_(z) has been obtained, the posterior
state probability P(sIX )=P.(z,) may be computed using
Equation 11.

In some embodiments, a forward-backward algorithm may
then be employed as in conventional HMM modeling. For-
ward probabilities a, backward probabilities fl and state pos-
teriors v are given by the recursions:

ar(s) = Z a1 ()T, ¢ Prlzs) Equation 14

Bels)= Y Brat(yy Praalzy)

g

ar(5)B(s)

T S B

In a maximization operation, all dictionary elements P(flz,
i) may be estimated. To that end, state posteriors may be used
to appropriately weigh Equation 8 and obtain:

> rePl HXe(f) Equation 15
T Ri=>43

P =
U= S e, 7P DD

Here, “s:zez,” represents the set of states which can select
basis z. Update rules for transition matrix T and the initial
state probabilities may be the same as with traditional HMM
models.

It should be noted that, in some cases, strong local optima
may cause convergence towards a poor solution during train-
ing. This may happen, for example, when the multinomial
bases for the terminal state adapt faster towards explaining the
first few input time points. One way to avoid this problem is
to ensure that convergence of the dictionary elements is not
too rapid so that there is a significant likelihood that dictio-
nary elements across states may switch, if needed. In some
embodiments, this may be achieved by imposing “anti-spar-
sity” prior to the activation of the dictionary elements. For
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example; a Dirichlet distribution or the like may be used over
the mixture weights for all P(flz) with hyper-parameters a,
slowly transitioning from 1.5 to 1 during training. This may
provide consistent results over multiple runs and avoid con-
version on wrong local optima.

State Sequence Estimation

In some embodiments, a procedure for computing an opti-
mal state sequence, given all model parameters may include,
for each observation, computing the emission probability for
each state through the EM estimation of Equations 13 and
Equation 11. Then, a Viterbi algorithm or the like may be used
to find the optimal state sequence as generally, known in the
art.

FIG. 5 shows two examples of results obtained from learn-
ing and state sequence estimation for individual sounds
according to some embodiments. Particularly, FIG. 5 shows
two spectrograms labeled “Series 1” and “Series 2,” each
spectrogram corresponding to a different sound. For each
spectrogram shown, a three-state Markov Selection Model of
the proposed architecture is learned. An optimal state
sequence for each data sequence using the model estimated
from it is then obtained. These state segmentations are shown
in the bottom plots of FIG. 5 for each of Series 1 and 2. These
results indicate that the segmentation is intuitive insofar as
each of the states captures a locally consistent region of the
data.

Modeling Mixtures of Signals

The Markov Selection Model introduced above may be
used, for example, to analyze the sum of the output of two
separate processes. For instance, let X *(f) and X_*(f) be two
data sequences obtained separately from two sources that are
well modeled by the Markov Selection Model. Also, let the
actual observation be such that X (H=X_“D+X_2(f). The
resulting statistical model for X (f) is then depicted in FIG. 6
according to some embodiments.

As shown in FIG. 6, each of the two sources may follow its
own independent Markov chain. The state output distribu-
tions for each source may be selector functions, as in the case
of'a single source. However, the summed data may be gener-
ated by an independent process that draws a mixture weight
vector including mixture weights for all bases of both
sources. The final observation may then be obtained by the
mixing of the bases selected by the states of both of the
sources using the drawn mixture weights.

To estimate state sequences for individual sources, the
same approximations shown above may be used. First, opti-
mal weights for all bases may be computed using iterations of
Equation 13. These iterations may calculate the P_(z) for all
bases from all sources. Once these are computed, the Markov-
chain-independent a posteriori state probabilities for each of
the states of the Markov models for both sources may be
determined using Equation 11 as follows:

Pis| X)) = Z P(2) Equation 16

€375

where X, is the i” source at time step T,S is any state in the
Markov model for the i source and z, is the set of bases
selected by the state.

Remarkably, the Markov Selection Model enables compu-
tation of the state emission probabilities for individual
sources given only the sum of their outputs. The optimal state
sequences for the individual source may be independently
obtained, for example, using a Viterbi algorithm.
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As aresult, the complexity of this process, given K sources,
each modeled by N states, is O(KN?), which is the equivalent
of performing K independent Viterbi decodes. This is in con-
trast to conventional factorial approach to modeling the mix-
ture of multiple sources, where the resulting model has NK
states and the Viterbi estimation of the optimal state sequence
requires O(N*%) operations, typically requiring complex
variational calculations.

FIG. 7 shows an example of results obtained from learning
and state sequence estimation for a sound mixture according
to some embodiments. The top plot is a spectrogram of a
“mixed” data sequence composed as a sum of the two
sequences of FIG. 5 (Series 1 and 2). Under a traditional
approach, a factorial Markov model would have considered
all twelve possible combinations between both models’
states, and then would have obtained the most likely state
paths using a 2-d Viterbi search. In contrast, using the Markov
Selection Model described herein, individual emission scores
for the states of the individual HMMs for every time instant as
well as optimal state sequence may be obtained indepen-
dently for each sound and/or source. The obtained state
sequences are shown in the bottom plots of FIG. 7. It should
be noted that these graphs are identical to the state sequences
obtained from the isolated sequences in FIG. 5, which indi-
cates that the Markov Selection Model may be successfully
applied to sound mixtures.
lustrative Methods

As described in the foregoing sections, the disclosed
Markov Selection Model is capable of recognizing simulta-
neously emitted signals from different sources. The recogni-
tion may be performed without the need to separate signals or
sources, thus reducing computational complexity and/or
number of operations. At least in part because elements of the
Markov Selection Model are added from state dictionaries to
construct mixed signals, the mixture may be evaluated as
components from different models. This is in contrast with
conventional Markov-based approaches, where Gaussian
functions describe all sounds and therefore cannot easily
explain mixtures.

In some cases, the signals to be recognized may be human
speech. In those cases, a Markov Selection Model may be
trained for each utterance from each speaker. Each utterance
may be a word or the like, and may contain a number of
syllables or phonemes. To model each utterance, the param-
eters described by Equations 12 through 15 may be calculated
in a training stage, for example, based on a spectrogram for
each utterance. Each trained model may therefore have one or
more state dictionaries, and each dictionary may have a two or
more spectral vectors. Moreover, each utterance from each
speaker may be represented by a linear combination of spec-
tral vectors from each respective dictionary.

In some embodiments, the number of dictionaries for each
model may be a function of the number of phonemes in a
particular utterance. For example, if an utterance has n pho-
nemes, a Markov Selection Model for that utterance may have
3ndictionaries. However, the number of dictionaries for each
model may be determined in other ways. As another example,
in some embodiments a human user may manually select the
number of dictionaries for each utterance based on visual
inspection of the utterance’s spectrogram during the training
stage.

In an application or evaluation stage, a sound mixture may
be stored, received, or identified that contains sounds emitted
by various sources such that they may at least partially over-
lap in time. For example, still referring to human speech, the
sound mixture may contain certain words or phrases simul-
taneously spoken by different persons. In some embodi-



US 9,047,867 B2

13

ments, the model for each word or utterance will have been
trained in an “offline” training stage using clean sounds. In
other embodiments, models for each word or utterance may
be trained “online”—e.g., using non-overlapping speech in
the sound mixture itself. In yet other embodiments, the sound
mixture may be pre-recorded or it may be a “live” event.
Either way, the sound mixture may be represented by a spec-
trogram or the like.

Once the sound mixture is received, several (or all) dictio-
nary vectors from available models may be combined to fit the
mixture. Then weights may be calculated for each dictionary
element or spectral vector using Equation 16 to estimate the
likelihood that each model represents the utterances in ques-
tion. In other words, once the weights for each spectral vector
can be determined, Equation 16 provides the probability that
a particular model was trained on a particular utterance.
Again, this is in contrast with other Markov methods where
no model is trained on the mixture itself, and therefore the
likelihood of each model recognizing a mixed utterance
would be very small.

For example, if it is known that the sound mixture includes
speech from n speakers, the method may select the n models
with highest likelihood of representation at a given time based
on the calculated mixture weights. Moreover, once concur-
rent speech is recognized, speakers may be identified based
on the models selected.

Referring now to FIG. 8, a flowchart of a method for
recognizing concurrent sounds is depicted according to some
embodiments. At 805, method 800 may identify a first model
corresponding to a first sound emitted by a first source. As
noted above, the first model includes a first set of dictionaries
and each dictionary includes a first set of spectral vectors.
Similarly, at 810, method 800 may identify a second model
corresponding to a second sound emitted by a second source,
where the second model includes a second set of dictionaries
and each dictionary includes a second set of spectral vectors.
Then at 815, method 800 may receive a representation of a
sound mixture. The sound mixture may include sounds emit-
ted by the first and second sources at least partially simulta-
neously. At 820, method 800 may combine combining spec-
tral vectors of the first and second models into a superset of
spectral vectors, and at 825 method 800 may calculating a
weight for each spectral vector of the superset of spectral
vectors with respect to the sound mixture. At 830, method 800
may then identifies or recognizes at least one of the first and
second sounds within the sound mixture based, at least in part,
on the calculated weights.

For example, the first source may be a first utterance spo-
ken by a first person and the second sound emitted by the
second source may be a second utterance spoken by a second
person. Notably, method 800 is capable of recognizing at least
one of the first and second sounds within the sound mixture
without separating those sounds. The recognition may be
based, for example, upon a determination that a likelihood
that the first model expresses the portion of the sound mixture
is greater than a likelihood that the second model expresses
the portion of the sound mixture. Although method 800
describes one model for each source, in other situations a
single source may have a plurality of models. Further, the
sound mixture may contain more than two concurrent
sounds—e.g., three persons speaking at once. In this case, the
sound mixture includes speech from 3 speakers, so the
method may select the 3 models with highest likelihood of
representation of the concurrent speech.

Referring now to FIG. 9, a flowchart of another method for
recognizing concurrent sounds is depicted according to some
embodiments. At 905, method 900 identifies a plurality of
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Markov Selection Models, where each Model corresponds to
an utterance spoken by a person. Then, at 910, method 900
receives a speech mixture including utterances concurrently
spoken by at least two persons. At 915, method 900 combines
spectral vectors of the plurality of models into a set of spectral
vectors, and at 920 method 900 calculates mixture weights for
one or more vectors of the set of spectral vectors based, at
least in part, on the speech mixture. At 925, method 900
recognizes a concurrently spoken utterance in the speech
mixture based, at least in part, on the mixture weights.

Referring now to FIG. 10, a flowchart of yet another
method for recognizing concurrent sounds is depicted
according to some embodiments. At 1005, method 1000
receives a sound mixture that includes a first sound emitted by
a first source and a second sound emitted by a second source.
Within the sound mixture, the first and second sounds may
overlap in time, at least partially. Then at 1010, method 1000
recognizes the first sound within the sound mixture without
separating the first sound from the second sound.
Experimental Results

This section presents experiments that demonstrate illus-
trative uses of the Markov Selection Model in speech recog-
nition applications.

A Small Scale Experiment

FIG. 11 shows results of an experiment using “digit” data
to illustrate the ability of the Markov Selection Model to
discover sequences from speech mixtures, according to some
embodiments. During a training phase, ten utterances of five
different digits (i.e., spoken numerals “one,” “two,” three,”
“four,” and “five”) from a single speaker were chosen, and an
instance of the proposed Markov model was derived for each
digit. For sake of simplicity, each model was designed as
having four states or dictionaries, and each dictionary had
three frequency distributions or spectral vectors. Each sepa-
rate digit included pre-emphasized magnitude spectra from
roughly 45 ms windows. Then, an additional unknown or
untrained utterance of each digit from the same speaker was
used to construct a set of sound mixtures containing one digit
each. The mixtures were analyzed using the pre-learned digit
models and their estimated likelihoods examined in order to
discover which utterances were spoken in the mixture.
Example results are shown for four mixture cases in FIG. 11,
each graph labeled “1+2 mix,” “2+3 mix,” “3+4 mix,” and
“4+5 mix.” In this example, the log likelihoods of the spoken
digits were significantly higher than the non-spoken digits,
from which the contents of the recording may be deduced.

For example, the 1+2 mix graph indicates that models for
digits 1 and 2 are identified as having the greatest likelihood
(i.e., shortest bars) of representing utterances in a mixed
signal containing the sounds “one” and “two.” Similarly, the
2+3 mix graph indicates that models for digits 2 and 3 are
identified as having the greatest likelihood of representing
utterances in a mixed signal containing the sounds “two” and
“three.” In fact, the concurrently spoken sounds in all of the
four sound mixtures were correctly recognized by the appro-
priate models.

A Large Scale Experiment

This section describes a large scale experiment using a
speaker separation challenge data set provided by the Univer-
sity of Sheffield, UK. The data was composed of mixture
recordings of two speakers simultaneously uttering sentences
of a predefined structure. In a first experiment the Markov
Selection Model was used to identity a specific word in the
sentence uttered by the primary speaker, and in a second
experiment the Markov Selection Model was used to recog-
nize all words for both utterances.
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The features used were magnitude spectral features. A time
frame of about 30 ms and a frame advance of 15 ms were used.
The magnitude spectra were preemphasized so that the higher
frequency content was more pronounced. Similarly as
described above, a Markov Selection Model was trained for
each word and each speaker using the number of states guide-
lines provided by the dataset documentation. One frequency
distribution was used per state, and each model was trained
for 500 iterations.

The resulting models from each speaker were then com-
bined to form a larger Markov model which can model an
entire target sentence with equiprobable jumps between all
candidate words at each section. For each mixture sentence
the speaker identities were provided in advance and the two
Markov Selection Models describing all the possible utter-
ances were used to estimate the most likely state sequence for
each speaker as described in the previous section. The results
of these simulations are shown in Table I for the first experi-
ment and in Table II for the second experiment.

TABLE I
Same Same Diff GHMM
SNR speaker gender gender Avg. Avg.
6dB 58.1% 68.3% 69.8% 65.2% 48.0%
3dB 46.4% 64.2% 64.7% 58.0% 37.2%
0dB 32.7% 53.9% 60.5% 48.6% 29.4%
-3dB 21.7% 44.8% 53.0% 39.3% 20.8%
-6 dB 13.6% 36.0% 45.7% 31.2% 15.5%
-9dB 8.7% 31.5% 37.0% 25.2% 12.3%
TABLE II
Same Same Diff
SNR speaker gender gender Avg.
Clean N/A N/A N/A 88%
6dB 68% 32% 80%  59%  83%  70% 77%  53%
3dB 57% 42% T7%  67%  80%  76%  T1%  61%
0dB 46% 53% 68%  75%  T76% 80%  63%  69%
-3dB 35% 65% 61% 80%  71%  84%  55%  76%
-6 dB 26% 74% 53%  84%  64%  86%  47%  81%
-9dB 21% 80% 48%  87%  57%  87%  41%  84%

The SNR columns in the tables above describe the ampli-
tude difference between the primary and the secondary speak-
ers. As expected, the louder the primary speaker is, the better
the results. The “Same speaker” columns show the results
when the two utterances were recorded from the same
speaker. This may be seen as presenting a worst case scenario,
because the dictionary elements in the Markov Selection
Models have maximal overlap and the state posterior prob-
abilities may become unreliable. In fact, this case yields the
lowest recognition results. The “Same gender” column
describes the results when the two speakers were of the same
gender. This is a somewhat better situation because there is
less overlap between the state dictionary elements. Accord-
ingly, the recognition results show some improvement.
Finally, the best recognition results are obtained when the two
speakers are of different gender, in which case there is a high
likelihood that dictionary elements do not overlap signifi-
cantly. The last two columns of Table I present the average
results of the Markov Selection Model (“Avg.”) as well as the
average results obtained using the same representation and a
Gaussian state HMM, while treating the secondary speaker as
noise (“GMM Avg”).

The overall results in both experiments rank high in terms
of previously achieved results, and come at a significantly
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lower computational cost than other approaches due to effi-
cient decoding schemes described herein. It should be noted
that, in some embodiments, selecting the proper representa-
tion may involves trading off the ability to discriminate
among sound sources and the ability to recognize their
sounds. For example, a fine frequency resolution and linear
amplitude scale may aid in discriminating the two speakers
and it may facilitate the additivity assumption, but it may also
impede recognition insofar as it may tend to highlight pitch
and amplitude variances. In contrast, a speech recognition
system may use a lower frequency resolution that tends to
conceal pitch information but that maintains spectral shape.
Such representation may also be used in the log amplitude
domain so that subtle amplitude patterns may be easier to
detect.

In some embodiments, as noted above, recognition using
Markov Selection Models may be performed without per-
forming source separation. In other embodiments, however,
once the state transitions have been estimated from a mixture,
its constituent sources may later be separated. As such, the
systems and methods described herein present a significant
computational improvement as compared to otherwise simi-
larly employed factorial Markov models without deteriorat-
ing performance.

The various methods as illustrated in the figures and
described herein represent example embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc. Various modifications and
changes may be made as would be obvious to a person of
ordinary skill in the art having the benefit of this specification.
It is intended that the invention embrace all such modifica-
tions and changes and, accordingly, the above description to
be regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method implemented by one or more computer sys-
tems, the method comprising:

receiving a mixed audio signal, the mixed audio signal

including:

one or more portions including audio signals emitted from

respective ones of a plurality of sources; and

atleast one portion having audio signals concurrently emit-

ted from the plurality of sources;

deriving a plurality of parameters for each of the audio

signals within the mixed audio signal, the plurality of
parameters derived from one of the mixed audio signal
or training data and including:

initial state probabilities representing probabilities of

beginning a Markov chain at each state in the Markov
chain;

a transition matrix representing a set of transition prob-

abilities between pair of states in the Markov chain; and
a set of state output distributions representing probabilities
of generating observations from each of'the states in the
Markov chain;

generating, from the parameters and independent of using
a Gaussian function, a plurality of models that each
contain one or more state dictionaries containing two or
more spectral vectors, such that each of the plurality of
sources is represented by one or more of the plurality of
models;

combining a plurality of the spectral vectors from the plu-

rality of models into a set of spectral vectors represent-
ing the mixed audio signal;

calculating mixture weights for each spectral vector in the

set of spectral vectors;
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calculating a likelihood that each one of the plurality of
models emitted one or more audio signals in the mixed
audio signal based at least in part on the set of spectral
vectors representing the mixed audio signal; and

selecting one or more models from the plurality of models
with the highest calculated likelihood.

2. The method of claim 1, wherein deriving the plurality of
parameters for each of the plurality of sources is performed
without preprocessing the mixed audio signal by a separation
algorithm.

3. The method of claim 1, wherein a number of dictionaries
for each of the plurality of models is determined dependent, at
least in part, on a number of phonemes within a correspond-
ing said audio signal.

4. A non-transitory computer-readable storage medium
storing program instructions that, when executed by one or
more computer systems, the method cause the one or more
computer systems to perform operations comprising:

receiving a mixed audio signal, the mixed audio signal
including one or more portions of audio signals emitted
from respective ones of a plurality of sources and at least
one portion having audio signals concurrently emitted
from the plurality of sources;

deriving a plurality of parameters for each of the audio
signals within the mixed audio signal, the plurality of
parameters derived from one of the mixed audio signal
or training data and including:

initial state probabilities representing the probabilities of
beginning a Markov chain at each state in the Markov
chain;

a transition matrix representing the set of all transition
probabilities between every pair of states in the Markov
chain; and

a set of state output distributions representing the probabil-
ity of generating observations from each of the states in
the Markov chain;

generating, from the parameters and independent of using
a Gaussian function, a plurality of models that each
contain one or more state dictionaries containing two or
more spectral vectors, such that each of the plurality of
sources is represented by one or more of the plurality of
models;

combining a plurality of the spectral vectors from the plu-
rality of models into a set of spectral vectors represent-
ing the mixed audio signal;

calculating mixture weights for each spectral vector in the
set of spectral vectors; calculating a likelihood that each
one of the plurality of models emitted a portion of one or
more audio signals in the mixed audio signal based at
least in part on the calculated mixture weights represent-
ing the mixed audio signal; and

selecting one or more models from the plurality of models
with the highest calculated likelihood.

5. The non-transitory computer-readable storage medium
of claim 4, wherein the combining of the plurality of spectral
vectors into the set of spectral vectors representing the mixed
audio signal is performed without preprocessing the mixed
audio signal by a separation algorithm.

6. A device, comprising:

at least one processor; and

a memory coupled to the at least one processor storing
program instructions executable by the at least one pro-
cessor to perform operations including:

receiving a mixed audio signal, the mixed audio signal
including one or more portions of audio signals emitted
from respective ones of a plurality of sources and at least
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one portion having audio signals concurrently emitted
from the plurality of sources;

deriving a plurality of parameters for each of the audio
signals within the mixed audio signal, the plurality of
parameters derived from one of the mixed audio signal
or training data and including:

initial state probabilities representing the probabilities of
beginning a Markov chain at each state in the Markov
chain;

a transition matrix representing the set of all transition
probabilities between every pair of states in the Markov
chain; and

a set of state output distributions representing the probabil-
ity of generating observations from each of the states in
the Markov chain;

generating, from the parameters and independent of using
a Gaussian function, a plurality of models that each
contain one or more state dictionaries containing two or
more spectral vectors, such that each of the plurality of
sources is represented by one or more of the plurality of
models;

combining a plurality of the spectral vectors from the plu-
rality of models into a set of spectral vectors represent-
ing the mixed audio signal;

calculating mixture weights for each spectral vector in the
set of spectral vectors;

calculating a likelihood that each one of the plurality of
models emitted a portion of one or more audio signals in
the mixed audio signal based at least in part on the
calculated mixture weights representing the mixed
audio signal; and

selecting one or more models from the plurality of models
with the highest calculated likelihood.

7. The device of claim 6, wherein the combining of the
plurality of spectral vectors into the set of spectral vectors
representing the mixed audio signal is performed without
preprocessing the mixed audio signal by a separation algo-
rithm.

8. The method of claim 1, further comprising identifying
one or more sources based on the selected one or more mod-
els.

9. The non-transitory computer-readable storage medium
of claim 4, further comprising identifying one or more
sources based on the selected one or more models.

10. The non-transitory computer-readable storage medium
of claim 4, wherein a number of dictionaries for each of the
plurality of models is determined dependent, at least in part,
on a number of phonemes within a corresponding audio sig-
nal.

11. The device of claim 6, further comprising identifying
one or more sources based on the selected one or more mod-
els.

12. The device of claim 6, wherein a number of dictionaries
for each of the plurality of models is determined dependent, at
least in part, on a number of phonemes within a correspond-
ing audio signal.

13. The method of claim 1, wherein the training data is
derived from an offline training method performed prior to
receiving the mixed audio signal.

14. The non-transitory computer-readable storage medium
of claim 4, wherein the training data is derived from an oftline
training method performed prior to receiving the mixed audio
signal.

15. The device of claim 6, wherein the training data is
derived from an offline training method performed prior to
receiving the mixed audio signal.
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